首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70908篇
  免费   1445篇
  国内免费   10143篇
  2022年   325篇
  2021年   514篇
  2020年   510篇
  2019年   1106篇
  2018年   1462篇
  2017年   813篇
  2016年   933篇
  2015年   1197篇
  2014年   1883篇
  2013年   2843篇
  2012年   2011篇
  2011年   1616篇
  2010年   1320篇
  2009年   1774篇
  2008年   2093篇
  2007年   2744篇
  2006年   2907篇
  2005年   2971篇
  2004年   3168篇
  2003年   2873篇
  2002年   2817篇
  2001年   2466篇
  2000年   1858篇
  1999年   2152篇
  1998年   1877篇
  1997年   1421篇
  1996年   1367篇
  1995年   1451篇
  1994年   1530篇
  1993年   1349篇
  1992年   1161篇
  1991年   1149篇
  1990年   939篇
  1989年   785篇
  1988年   823篇
  1987年   630篇
  1986年   550篇
  1985年   2031篇
  1984年   3073篇
  1983年   2019篇
  1982年   2395篇
  1981年   2043篇
  1980年   1920篇
  1979年   1698篇
  1978年   1568篇
  1977年   1426篇
  1976年   1314篇
  1975年   1111篇
  1974年   1101篇
  1973年   1028篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Infrared spectroscopy was used to investigate the changes in bands assigned to phospholipids and proteins in dehydrated and rehydrated sarcoplasmic reticulum. The changes in CH2 and CH3 stretching bands, amide bands, and phosphate stretching bands are similar to shifts in frequency seen for those bands in phospholipid and protein preparations during thermotropic phase transitions and hydration. IR studies on dry trehalose-sarcoplasmic reticulum mixtures show similar results; with increasing trehalose concentration in the dry mixtures, amide and phosphate bands shift to frequencies characteristic of hydrated samples. Changes in bands assigned to OH deformations in the trehalose suggest that the interaction between the carbohydrate and membrane is by means of hydrogen bonding between these OH groups and membrane components.  相似文献   
992.
Rat testis mitochondrial ATPase was not inhibited by oligomycin at pH 7.5. It was inhibited only at higher alkaline pH's, and showed a lower sensitivity both to oligomycin and N,N′-dicyclohexylcarbodiimide and a higher one to efrapeptin. In submitochondrial particles, testis ATPase was only slightly inhibited by oligomycin, ossamycin, and efrapeptin. The possibility of a loose binding of F1 to the membrane was supported by its recovery from the supernatant of the submitochondrial particles. Furthermore, by electron microscopy, after hypoosmotic shock and negative staining of the mitochondrial preparations, most of the inner mitochondrial membranes showed only a few “knobs” or none at all. The capacity of the testis mitochondrial preparation to produce ATP was tested and compared to that from liver. ATP synthetase/ATPase activity ratio was 301 in liver mitochondria, whereas in the testis it was 31. In spite of this large difference, at least part of the testis ATPase must be firmly bound to the membrane, since it is able to form ATP. The rest seems to be loosely bound and its functional significance is still unknown.  相似文献   
993.
β-Carboline derivatives inhibited both indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase activities from various sources. Among them, norharman is most potent for both enzymes from mammalian sources. Kinetic studies revealed that norharman is uncompetitive (Ki = 0.12 mm) with l-tryptophan for rabbit intestinal indoleamine 2,3-dioxygenase, and linearly competitive (Ki = 0.29 mm) with l-tryptophan for mouse liver tryptophan 2,3-dioxygenase. In addition, some β-carbolines selectively inhibited one enzyme or the other. Pseudomonad tryptophan 2,3-dioxygenase was inhibited by a different spectrum of β-carbolines. Such a selective inhibition by the structure of substrate analogs is more evident by the use of indole derivatives. Indole-3-acetamide, indole-3-acetonitrile and indole-3-acrylic acid exhibited a potent inhibition for mammalian tryptophan 2,3-dioxygenase, while they moderately inhibited the pseudomonad enzyme. However, they showed no inhibition for indoleamine 2,3-dioxygenase. These results suggest the difference of the structures of the active sites among these enzymes from various sources.  相似文献   
994.
Soluble extracts of rat liver contain a protein inhibitor of calcium-dependent proteases. The inhibitor has an apparent Mr = 250,000 and is separated from the calcium-dependent proteases by gel-filtration chromatography in the presence of EGTA. The inhibitor has been purified by affinity chromatography using a calcium-dependent protease covalently linked to Affi-Gel 15. The inhibitor specifically binds to this affinity resin in a calcium-dependent manner and elutes in the presence of EDTA or EGTA. The purified inhibitor appears as a single protein with Mr = 125,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Presumably it is a dimer under nondenaturing conditions. The inhibitor inhibits each of two calcium-dependent proteases from rat liver and from other tissues and species. However, it has no effect on any other protease tested.  相似文献   
995.
The effect of enzymatic lipid peroxidation on the molecular order of microsomal membranes was evaluated by ESR spectroscopy using the spin probes 5-, 12-, and 16-doxyl-stearic acid. Rat liver microsomal membranes were peroxidized by the NADPH-dependent reaction in the presence of the chelate ADP-Fe3+. Peroxidation resulted in a preferential depletion of polyenoic fatty acids and an increase in the percentage composition of shorter fatty acyl chains. There was no change in the cholesterol/phospholipid ratio of the peroxidized microsomes. The molecular order of both control and peroxidized membranes decreased toward the central region of the bilayer, and the order parameter (S) of each probe was temperature dependent. Peroxidation of the microsomal membrane lipids resulted in an increase in the order parameter determined with the three stearic acid spin probes. Of the three probes, 12-doxylstearic acid was the most sensitive to the changes in membrane organization caused by peroxidation. These data indicate that ESR spectroscopy is a sensitive method of detecting changes in membrane order accompanying peroxidation of membrane lipids.  相似文献   
996.
The oxidation of NADPH and NADH was studied in the light and in the dark using sonically derived membrane vesicles and osmotically shocked spheroplasts. These two types of cell-free membrane preparations mostly differ in that the cell and thylakoid membranes are scrambled in the former type and that they are more or less separated in the latter type of preparations. In the light, using both kinds of preparations, each of NADPH and NADH donates electrons via the plastoquinone-cytochrome bc redox complex (Qbc redox complex) to the thylakoid membrane-bound cytochrome c-553 preoxidized by a light flash and to methylviologen via Photosystem I. NADPH donates electrons to the thylakoid membrane via a weakly rotenone-sensitive dehydrogenase to a site that is situated beyond the 3(3′,4′-dichlorophenyl)-1,1-dimethylurea sensitive site and before plastoquinone. Ferredoxin and easily soluble cytoplasmic proteins are presumably not involved in light-mediated NADPH oxidation. Inhibitors of electron transfer at the Qbc redox complex as the dinitrophenylether of 2-iodo-4-nitrothymol, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone and 2-n-heptyl-4-hydroxy-quinone-N-oxide are effective, but antimycin A and KCN are not. The oxidation of NADH showed comparable sensitivity to these inhibitors. However, the oxidation of NADH is antimycin-A-sensitive regardless of the kind of membrane preparation used, indicating that in this case electrons are donated to a different site on the thylakoid membrane. In the dark, NADPH and NADH donate electrons at sites that behave similar to those of light-mediated oxidation, indicating that the initial steps of electron transfer are situated at the thylakoid membranes. However, NADPH oxidation is in some cases not sensitive to inhibitors active at the Qbc redox complex. It is concluded that O2 reduction takes place at two different sites, one partly developed in vitro, situated near the rotenone-sensitive NADPH dehydrogenase, and another, highly KCN-sensitive one, situated beyond the Qbc redox complex and used in vivo. The terminal oxygen-reducing step of NADPH and NADH oxidation in the dark showed a preparation-dependent sensitivity for KCN, more than 80% inhibition in sonically derived membrane vesicles and less than 30% inhibition in osmotically shocked spheroplasts. From this result we tentatively conclude that the highly KCN-sensitive oxidase is not necessarily located at the thylakoid membrane and could be located at the cytoplasmic membrane.  相似文献   
997.
The H2 uptake activity (units/mg protein) of Clostridium pasteurianum cells with methylene blue as the electron acceptor increases with cell density independent of the growth conditions. The H2 evolution activity (units/mg protein) of the same cells with reduced methyl viologen as the electron donor remains fairly constant under all growth conditions tested. Cells grown under N2-fixing conditions have the highest H2 uptake activity and were used for the purification of hydrogenase II (uptake hydrogenase). Attempts to separate hydrogenase II from hydrogenase I (bidirectional hydrogenase) by a previously published method were unreliable. We report here a new large-scale purification procedure which employs a rapid membrane filtration system to fractionate cell-free extracts. Hydrogenases I and II were easily filtered into the low-molecular-weight fraction (Mr less than 100 000), and from this, hydrogenase II was further purified to a homogeneous state. Hydrogenase II is a monomeric iron-sulfur protein of molecular weight 53 000 containing eight iron atoms and eight acid-labile sulfur atoms per molecule. Hydrogenase II catalyzes both H2 oxidation and H2 evolution at rates of 3000 and 5.9 μmol H2 consumed or evolved/min per mg protein, respectively. The purification procedure for hydrogenase II using the filtration system described greatly facilitates the large-scale purification of hydrogenase I and other enzymes from cell-free extracts of C. pasteurianum.  相似文献   
998.
Uninduced rat liver microsomes and NADPH-Cytochrome P-450 reductase, purified from phenobarbital-treated rats, catalyzed an NADPH-dependent oxidation of hydroxyl radical scavenging agents. This oxidation was not stimulated by the addition of ferric ammonium sulfate, ferric citrate, or ferric-adenine nucleotide (AMP, ADP, ATP) chelates. Striking stimulation was observed when ferric-EDTA or ferric-diethylenetriamine pentaacetic acid (DTPA) was added. The iron-EDTA and iron-DTPA chelates, but not unchelated iron, iron-citrate or iron-nucleotide chelates, stimulated the oxidation of NADPH by the reductase in the absence as well as in the presence of phenobarbital-inducible cytochrome P-450. Thus, the iron chelates which promoted NADPH oxidation by the reductase were the only chelates which stimulated oxidation of hydroxyl radical scavengers by reductase and microsomes. The oxidation of aminopyrine, a typical drug substrate, was slightly stimulated by the addition of iron-EDTA or iron-DTPA to the microsomes. Catalase inhibited potently the oxidation of scavengers under all conditions, suggesting that H2O2 was the precursor of the hydroxyl radical in these systems. Very high amounts of superoxide dismutase had little effect on the iron-EDTA-stimulated rate of scavenger oxidation, whereas the iron-DTPA-stimulated rate was inhibited by 30 or 50% in microsomes or reductase, respectively. This suggests that the iron-EDTA and iron-DTPA chelates can be reduced directly by the reductase to the ferrous chelates, which subsequently interact with H2O2 in a Fenton-type reaction. Results with the reductase and microsomal systems should be contrasted with results found when the oxidation of hypoxanthine by xanthine oxidase was utilized to catalyze the production of hydroxyl radicals. In the xanthine oxidase system, ferric-ATP and -DTPA stimulated oxidation of scavengers by six- to eightfold, while ferric-EDTA stimulated 25-fold. Ferric-desferrioxamine consistently was inhibitory. Superoxide dismutase produced 79 to 86% inhibition in the absence or presence of iron, indicating an iron-catalyzed Haber-Weiss-type of reaction was responsible for oxidation of scavengers by the xanthine oxidase system. These results indicate that the ability of iron to promote hydroxyl radical production and the role that superoxide plays as a reductant of iron depends on the nature of the system as well as the chelating agent employed.  相似文献   
999.
A five-month-old Japanese boy was found to have marked glycogen accumulation only in the heart. A survey of enzymes revealed normal activities of phosphorylase, cyclic AMP-dependent protein kinase, acid maltase and amylo-1,6-glucosidase. However, the heart had capacity of activating neither rabbit muscle phosphorylase b nor endogenous phosphorylase b, which was converted to active form only when supplemented rabbit muscle phosphorylase kinase. In contrast to the heart, activities of phosphorylase kinase were found within normal levels in other organ tissues so far tested. These findings indicate that the present case of the cardiac glycogenosis is caused by deficiency of cardiac phosphorylase kinase.  相似文献   
1000.
The effect of Fc receptor engagement on protein phosphorylation in murine peritoneal macrophages has been investigated. Treatment of macrophage cultures with insoluble immune complexes resulted in enhanced phosphorylation of six proteins at 73, 66, 53, 37, 31 and 25 kD. Comparison of the protein phosphorylation patterns induced by immune complexes with those induced by agents which mimic the actions of well known intracellular second messengers (i.e., A23187, dibutyryl cAMP, or phorbol myristate acetate) revealed substantial similarity between Fc receptor induced events and those induced in response to phorbol diesters. There were, however, two phosphorylated proteins which were only seen following stimulation with immune complexes. Thus, more than one kind of protein kinase activity appears to be involved in Fc receptor mediated stimulation of macrophage function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号